
International Journal of Theoretical Physics, Vol. 31, No. 12, 1992 

Anisotropic Cosmological Models of Bianchi Types III 
and V in Lyra's Geometry 
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Exact solutions to Einstein's equations are presented in vacuum and in the pres- 
ence of stiff matter for spatially homogeneous cosmological models of Bianchi 
types type III and V in the normal gauge for Lyra's geometry. Solutions represent 
anisotropic cosmological universes which contract from infinite volume at the 
initial time singularity T=0 to zero volume as T~ oo. Some physical properties 
of the models are also discussed. 

1. INTRODUCTION 

Experimental studies of  the isotropy of  cosmic microwave radiation and 
speculation about the amount  of  helium formed at early stages of  the uni- 
verse and many other effects have stimulated theoretical interest in aniso- 
tropic cosmological models. Bianchi spaces I - IX play important roles in 
constructing models of  spatially homogeneous cosmologies (Ryan and 
Shepley, 1975). There is a large body of literature concerning specific Bianchi 
spaces which contain fluids with specific equations of  state. The properties 
of  the space-time continuum are not consistent with the geometry of  a fiat 
space, but require Riemannian geometry for their description. Lyra (1951) 
proposed a modification of  Riemannian geometry by introducing a gauge 
function into the structureless manifold that bears close resemblance to 
Weyl geometry. The energy-momentum tensor is not conserved in Lyra's 
geometry. Halford (1970) developed a cosmological theory within the frame- 
work of  this geometry which results in nonstatic models of perfect fluid 
cosmologies. 

Recently, Singh and Singh (1991) obtained exact solutions of  Einstein's 
field equations for the anisotropic Bianchi type I model in the normal gauge 
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for Lyra's geometry. Since Bianchi type I models are a very special subset 
of spatially homogeneous models, we here consider the more general Bianchi 
types III and V models in a similar investigation. Field equations are consid- 
ered in the case of Bianchi type III and V spaces in Lyra's geometry when 
the displacement vector is time-dependent. Exact solutions of the field equa- 
tions are obtained in vacuum and for a stiff matter distribution. The physical 
and geometrical properties of solutions are also discussed. 

2. FIELD EQUATIONS 

The field equations in normal gauge for Lyra's manifold are (Sen, 1957) 
1 3 1 a 

~ g v ~ b  ] = - K T u v  R,~ - ~gu~R + ~ [~bu ~b~- (1) 

Here ~b u is the displacement field vector defined as 

~b u = (0, O, O,/3) (2) 

where/3 = / 3 ( 0  and other symbols have their usual meanings. The energy- 
momentum tensor for a perfect fluid distribution is given by 

Tu,, = (P +P)UuU~ -Pgu ~ (3) 

together with 

uuu u = 1 (4) 

where p is the pressure, p is the energy density, and u u is the 4-velocity 
vector. 

2.1. Bianchi Type HI Solutions 

The metric of the Bianchi type III class of models is taken in the form 

ds2= d t2 -  A 2 d x 2 -  B 2 e z~ dy 2 -  C 2 dz 2 (5) 

where A, B, and C are functions of cosmic time t. In comoving coordinates 
u a = 34 u , the field equations to be solved are 

B t~ /~0 3 2 
B + - C + B c = - K p - ~  fl (6) 

C it" CA 3 2 
- - + - - +  = - K p - - ~  fl (7) 
C A  CA 

~1" J~ A/~ 1 3 2 (8) 
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21~+~___d+ d21 1 =rp+~/~2 
AB BC CA A 2 (9) 

. . . .  0 (10) 
A B 

In addition to these equations, the energy conservation equation gives 

2 L 2 Jkh B C/ 

A dot denotes differentiation with respect to t. 
A linear combination of equations (6)-(9) gives 

; i  , , 
- + -  i , ; (p-p)  (12) 
.4 A ~ ~)-~=~ 
/~ /~{d'+21~, ' 1 l 
- - + -  K(p-p)  (13) 
8 ~ , ~  ~/-~=~ 

e+e(21+~i] 1 
-6 -6 \~  B]=-~K(p-p) (14) 

A+B+C+z(21B BC (Z/I] 2 3 
+ - - +  K(p-p)  (15) -J -~ -6 \AB BC CAJ--~=~ 

Equation (10), on integration, leads to A = bB. Without loss of generality 
we take the arbitrary constant b equal to unity. 

Using the equation of state p = (;t - 1)p, 1 < ~, < 2, and defining 

VS=A2C (16) 

we find that equations (12)-(15) and (11) reduce to 

j[ 212 3P21 1 1 
A A z + -  A' )~)/f (17) vA =~Kp(2- 

~-C--~+ = - K p ( E - Z ) / f  (18) VC 2 
17 2I? 2 2 3 

V2 Z)/f (19) V 3A2=2 Kp(E- 

K~ + ~ fl/3 + 3 (KA,o + ~ flz) ~-= 0 (20) 



2098 Ram and Singh 

Making the scale transformation 

dt = A2C dT  (21) 

into equations (17)-(20), we get 

V 6 \ A  A 2 A2C2 = K p ( 2 - Z ) / f  (22) 

1 C a 1 
V6(- ~ '  -C-f)=-~Kp(2- ,~) / f  (23) 

1 (V"  V a 2 A 2 C Z ] = 3 K p ( Z _ A , ) / f  (24) 
v 2 3 j 2 

2 Vt__ 

where a prime denotes differentiation with respect to T. 
It is difficult to obtain general solutions of (22)-(25), so we consider 

some cases of physical interest. 

Case 2.1(a). In empty space ( p = p  =0), equations (22)-(25) reduce to 

A" m t2 
. . . .  A2C 2 (26) 
A A 2 

C ,t C t2 
. . . .  0 (27) 
C C 2 

V" V t2 
V V 2=2A2C23 (28) 

Vt 
/3' + 3/3 - -  = 0 (29) 

V 

Equation (27) yields the solution 

C =e  "r  (30) 

m is an integration constant. Here the unnecessary constants will be elimi- 
nated by absorption into the suitably defined coordinates. 

Inserting (30) into (26), we obtain 

(log A)" = A 2 e 2"r (31) 
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The general solution of  (31) is 

A = a e - m r  cosech(aT) (32) 

where a is an integration constant. Again, inserting (30) and (32) into 
(28) and integrating, we find that 

V 3 = a 2 e -mr  eosech2(aT) (33) 

Equation (29) leads to 

n 
/3 =-V- 3 (34) 

where n is an integration constant. The constants m,  n, and a are related by 

4(a 2 - m 2) = 3n 2 (35) 

Case 2 .1 (b ) .  For  a stiff-matter universe (~=2 )  the solutions of  equa- 
tions (17)-(19) are the same as the empty-space solutions, but equation (20) 
leads to 

d 3 2 
p = p = 4 K V 6  ~ K  fl (36) 

where d is also an integration constant satisfying 

4(a 2 -  m 2) = d (37) 

We now discuss some physical features of  the solutions. For  the geomet- 
rical properties and singularity we refer to Hawking and Ellis (1973). Both 
the vacuum and stiff-matter solutions have the same geometrical properties 
except for the properties of  the pressure and matter density near the singular- 
ities. The expansion 0 (=u ;u~,) has the expression 

0 = - I ra  + 2a coth(aT)]  (38) 

which is infinite at T =  0 a n d  monotonically decreasing for T>0 .  In fact, 
0 ~ 0  as T--. oo. The spatial volume V 3 is also infinite at T = 0  and tends to 
zero as T--* oo. On the other hand, the shear scalar has the value 

1 1/2 cr = ~ - ~  [17m 2 + 6a 2 coth(aT)  + 20arn coth(aT)]  (39) 

The components of  the acceleration vector and the rotation tensor are 
zero. The fluid is therefore moving irrotationally with shear. 

The gauge function fl is zero at T = 0  and tends to infinity as T--* oo. 
Th~ pressure and energy density are zero at T =  0 and become infinite as 
T--. oo. Thus, the solution corresponds to a contracting model of  the uni- 
verse. The solution in vacuum has similar properties. 
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2.2. Bianchi Type V Solutions 

The metric for the spatially homogeneous Bianchi type V space-time is 

ds 2 = dt 2 _ X  2 dx 2 _ e2X( y2 dy2 + Z 2 dz 2) (40) 

where X, Y, and Z are cosmic scale functions. The importance of Bianchi 
type V space-times is due to the fact that the space of constant negative 
curvature is contained in this class as a special case. 

Considering the gauge function 13 as a function of t only, the field 
equations (1)-(3) for the line element (40) reduce to 

~ ' 2 ~ 2  1 3 2  
- - + - - 4 - -  X 2 = - K p  (41) y z YZ -~/3 

2 2 z x  1 3/32 
- -+ - -4  X 2= -Kp (42) 
Z X ZX  - 4  

2 ~ x~ 1 3/32 
- -q---- ' l -  - -  X 2  (43) x y x r  = - K p - ~  

+ - - 4  - -  X2 (44) 
X Y YZ ZX 

2 2 ~ 2  
=0 (45) 

X Y Z 

The conservation equation gives 

Ktb+~fl~+IK(p+p)+3 - ~I[~ ~ 2~ 2 fl J [ ~ + ~ + ~ ) = 0  (46) 

Equation (45), on integration, leads to 

X 2= YZ (47) 

where the integration constant is taken to be unity without loss of generality. 
Making the scale transformation 

dt = X  3 dT (48) 

and using the procedure as in Section 2.1, we see that the field equations 
(41)-(46) reduce to 

1 ,2 2 X 1 
X6 (X~X t -~)-~-5=-~ Kp(2-  ~,)/f (49) 

X6 \ y y 2 ] - - ~ = ~  Kp(2- ,~ ) / f  (50) 
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X 6 Z 2] X 2 2Kp(2-A')/f (51) 

t 

(52) 

where a prime denotes differentiation with respect to T. 

Case 2 .2 (a ) .  In empty space, equations (49)-(52) give 

X tt X t2 
2X4=0 

X X 2 

y .  y ,2 
2X4=0 

Y Y 

Z "  Z t2 
2X4=0 

Z Z z 

(53) 

(54) 

(55) 

fl, + 3fl X'=o 
X 

(56) 

Combining (54) and (55), we obtain 

y ,  y,2 Z "  Z '2 

y y2  Z Z 2 
(57) 

which has the general solution 

Y =  Z e Ir (58) 

where l is an integration constant. In view of (58), the solutions of 
(53)-(56) are 

X2 =_k cosech(k T) (59) 
2 

y2= Ii e Ir cosech(kT) (60) 

Z 2 = 12 e - t r  cosech(kT) (61) 

13 
fl =X3 (62) 

where k, lj, 12, and/3 are integration constants satisfying the constraints 

k 2 = 4lj12, 3k 2 -  l 2 = 312 (63) 
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Case 2.2(b). For  stiff-matter-filled space ( p = p ) ,  equations (49)-(51) 
have the same solutions as in empty space, but equation (52) has the solution 

14 3 2 
p = 4KX6 ~-Kfl (64) 

together with the constraint 

3k 2 - 12 = 14 (65) 

The physical behaviors of  the solutions are the same as those of  Bianchi 
type I I I  solutions. 

3. C O N C L U S I O N S  

Here we have presented exact solutions to Einstein's equations in 
vacuum and in the presence of  stiff matter  for spatially homogeneous cos- 
mological models of  Bianchi types I I I  and V in normal gauge for Lyra 's  
geometry. These solutions represent anisotropic contracting universes f rom 
infinite volume at the initial singularity T = 0  to zero volume as T ~  or. 
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